Normobaric hyperoxia reduces the neurovascular complications associated with delayed tissue plasminogen activator treatment in a rat model of focal cerebral ischemia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE A major limitation of tissue plasminogen activator (tPA) thrombolysis for ischemic stroke is the narrow time window for safe and effective therapy. Delayed tPA thrombolysis increases the risk of cerebral hemorrhage and mortality, which, in part, is related to neurovascular proteolysis mediated by matrix metalloproteinases (MMPs). We recently showed that normobaric hyperoxia treatment reduces MMP-9 expression and blood-brain barrier disruption in the ischemic brain. Therefore, we hypothesized that normobaric hyperoxia could increase the safety of delayed tPA thrombolysis in stroke. METHODS Male Sprague-Dawley rats were exposed to normobaric hyperoxia (95% O(2)) or normoxia (21% O(2)) during 5-hour filament occlusion of the middle cerebral artery followed by 19-hour reperfusion. Thirty minutes before reperfusion, saline or tPA was continuously infused to rats over 1 hour. Outcome parameters were neurological score, mortality rate, brain edema, hemorrhage volume, and MMP-9. Hemorrhage was quantified with a hemoglobin spectrophotometry method. Edema was evaluated as hemispheric enlargement. MMP-9 was measured by gelatin zymography. RESULTS In normoxic rats, delayed tPA treatment at 4.5 hours after stroke onset resulted in high mortality, more severe neurological deficits, increased hemorrhage volumes, and augmented MMP-9 induction compared with saline. Rats treated with combined normobaric hyperoxia and tPA showed significantly reduced tPA-associated mortality, brain edema, hemorrhage, and MMP-9 augmentation as compared with tPA alone. CONCLUSIONS Our results suggest that early normobaric hyperoxia treatment may represent an important strategy to increase the safety of delayed tPA thrombolysis in ischemic stroke.
منابع مشابه
Normobaric hyperoxia slows blood-brain barrier damage and expands the therapeutic time window for tissue-type plasminogen activator treatment in cerebral ischemia.
BACKGROUND AND PURPOSE Prolonged ischemia causes blood-brain barrier (BBB) damage and increases the incidence of neurovasculature complications secondary to reperfusion. Therefore, targeting ischemic BBB damage pathogenesis is critical to reducing neurovasculature complications and expanding the therapeutic time window of tissue-type plasminogen activator (tPA) thrombolysis. This study investig...
متن کاملBone marrow stromal cells can promote the neurogenesis in subventricular zone in the rat with focal cerebral ischemia
Introdution: Stroke is one of the most common diseases caused by occlusion or rupture of blood vessels in brain. It brings heavily loads for families and societies. Although some new strategies including treatment of tissue plasminogen activator have been applied in the clinic, these methods do not have perfect effect. Accordingly, more effective therapeutic strategies need to be developed...
متن کاملEvaluation of UCP2 expression in the phenomenon of ischemic resistance induced by alternating normobaric hyperoxia in a rat model of stroke
Introduction: ischemic preconditioning is one of the most important mechanisms, responsible for the increased brain resistance after stroke. One of the most important candidates to ischemia preconditioning is intermittent normobaric hyperoxia. In this study, the effect of intermittent normobaric hyperoxia on the expression of UCP2 was investigated in a stroke model. Methods: Rats were divid...
متن کاملEffects of normobaric hyperoxia pretreatment on ischemia-reperfusion injury in regional ischemia model of isolated rat heart
Abstract Introduction: Resent studies have been shown beneficial effects of hyperoxia pretreatment against ischemia-reperfusion injury in different organs. The aim of the present study was to investigate early and late effects of normobaric hyperoxia (≥95% O2) pretreatment on ischemia-reperfusion injuries in isolated rat hearts. Methods: Following 60 and 180 minutes of hyperoxia, rat hearts w...
متن کاملEffects of preconditioning with intermittent normobaric hyperoxia on TNFR1 and TNFR2 expression in the rat brain
Introduction: Recent studies have shown that intermittent normobaric hyperoxia (HO) protects the rat brain from ischemia reperfusion injury. However, the exact mechanism of this kind of protection in vivo is not known. In this study, the effect of HO on expression of TNFR1 and TNFR2 in a stroke model was investigated. Methods: In this experimental study, rats were divided into 4 groups: no...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 40 7 شماره
صفحات -
تاریخ انتشار 2009